Free Search For Steel Technical Property Data

 

THE SPARK TEST OF STEELS

Spark testing is a method of determining the general classification of ferrous materials. Normally it entails taking a piece of metal, usually scrap, and applying it to a grinding wheel in order to observe the sparks emitted. These sparks can be compared to a chart or to sparks from a known test sample to determine the classification. Spark testing also can be used to sort ferrous materials, establishing the difference from one another by noting if the spark is the same or different.
Spark testing is used because it is quick, easy, and inexpensive. Moreover, test samples do not have to be prepared in any way, so often, a piece of scrap is used. The main disadvantage to spark testing is its inability to identify a material positively; if positive identification is required, chemical analysis must be used. The spark comparison method also damages the material being tested, at least slightly.
Spark testing most often is used in tool rooms, machine shops, heat treating shops, and foundries.

Process

Usually a bench grinder is used to create the sparks, but sometimes this is not convenient so a portable grinder is used. In either case the grinding wheel must have adequate surface velocity, at least 23 m/s (4500 surface feet per minute (sfpm)), but should be between 38 and 58 m/s (7500–11,500 sfpm). The wheel should be coarse and hard, therefore, aluminium oxide or carborundum often are employed. The test area should be in an area where there is no bright light shining directly into the observer's eyes. Moreover, the grinding wheel and surrounding area should be dark so that the sparks can be observed clearly. The test sample is then touched lightly to the grinding wheel to produce the sparks.
The important spark characteristics are color, volume, nature of the spark, and length. Note that the length is dependent on the amount of pressure applied to the grinding wheel, so this can be a poor comparison tool if the pressure is not exactly the same for the samples. Also, the grinding wheel must be dressed frequently to remove metallic build-up.
[edit] Compressed air method
Another less common method for creating sparks is heating up the sample to red heat and then applying compressed air to the sample. The compressed air supplies enough oxygen to ignite the sample and give off sparks. This method is more accurate than using a grinder because it will always give off the same length sparks for the same sample. The compressed air applies essentially the same "pressure" each time. This makes observations of the spark length a much more reliable characteristic for comparison.
[edit] Automated spark testing
Automated spark testing has been developed to remove the reliance upon operator skill and experience, thereby increasing reliability. The system relies upon spectroscopy, spectrometry, and other methods to "observe" the spark pattern. It has been found that this system can determine the difference between two materials that give off sparks that are indistinguishable to the human eye.




Fig. 1 shows cast iron, which possesses a dull red, non-explosive spark that thickens towards the end. Fig, 2 shows wrought iron, whose spark is brighter, as indicated, and has a luminous extremity. If any traces of carbon are found in the iron, the extremity may reveal a burst or fork.
Fig. 3 shows mild steel. The thick, luminous iron spark is broken up by the branching due to carbon. Fig. 4 shows a 0.60 per cent. carbon steel spark. The tendencies have virtually vanished, and the carbon branching occurs nearer to the grinding wheel. Fig. 5 shows a high grade tool steel containing carbon. Fig. 6 is high-speed tool steel. An odd carbon spark or two are to be seen, but the rest are modified by the other alloying elements. The sparks are of an orange hue, and vary in brightness as they travel, giving the effect of an interrupted line, while they have a more luminous tip.
      Fig. 7 is high manganese steel. In this case the spark is different from that of the carbon spark inasmuch as the explosive particle leaves the luminous line at right-angles. and the sub-division of explosions is also at 90 degrees, as against the 40-50 degrees of the carbon sparks at Fig. 3. Fig. 6 is self-hardering Mushet steel. Here an odd manganese spark is visible, and the relatively high tungsten percentage appears to give discontinuity to the spark. Finally, Fig. 9 is a tungsten magnet steel. Here can be perceived the respective sparks of manganese tungsten and the like.

Spark characteristics

Wrought iron 
Wrought iron sparks flow out in straight lines. The tails of the sparks widen out near the end, similar to a leaf.
Mild steel 
Mild steel sparks are similar to wrought iron's, except they will have tiny forks and their lengths will vary more. The sparks will be white in color.
Medium-carbon steel 
This steel has more forking than mild steel and a wide variety of spark lengths, with more near the grinding wheel.
High-carbon steel 
High-carbon steel has a bushy spark pattern (lots of forking) that starts at the grinding wheel. The sparks are not so bright as the medium-carbon steel ones.
Manganese steel 
Manganese steel has medium length sparks that fork twice before ending.
http://upload.wikimedia.org/wikipedia/commons/7/7a/Spark_testing_1.png
(A) High-carbon steel (B) Manganese steel (C) Tungsten steel (D) Molybdenum steel
http://upload.wikimedia.org/wikipedia/commons/2/25/Spark_testing_2.png
   (A) Wrought iron
   (B) Mild steel
   (C) Steel with 0.5 to 0.85% carbon
   (D) High-carbon tool steel
   (E) High-speed steel
   (F) Manganese steel
   (G) Mushet steel
   (H) Special magnet steel
High-speed steel 
High-speed steel has a faint red spark that sparks at the tip.
300-series stainless steel 
These sparks are not so dense as the carbon steel sparks, do not fork, and are orange to straw in color.
310-series stainless steel 
These sparks are much shorter and thinner than the 300-series sparks. They are red to orange in color and do not fork.
400-series stainless steel 
400-series sparks are similar to 300-series sparks, but are slightly longer and have forks at the ends of the sparks.
Cast iron 
Cast iron has very short sparks that begin at the grinding wheel.
Nickel and cobalt high-temperature alloys 
These sparks are thin and very short, they are dark red in color, and do not fork.
Cemented carbide
Cemented carbide has sparks under 3 inches which are dark red in color and do not fork.
Titanium
Although titanium is a non-ferrous metal, it gives off a great deal of sparks. These sparks are easily distinguishable from ferrous metals, as they are a very brilliant, blinding, white color.

HSS Spark Test

Video (Titanium Test)


History

In 1909, Max Bermann, an engineer in Budapest, was the first to discover that spark testing can be used reliably to classify ferrous material. He originally claimed to be able to distinguish different types of ferrous materials based on percent carbon and principal alloying elements. Moreover, he claimed to achieve an accuracy of 0.01% carbon content.
As of the late 1980s, the industrial use of spark testing is not so common as it used to be.
Source:
http://en.wikipedia.org/wiki/Spark_testing
http://shopswarf.orconhosting.net.nz/spark.html
http://webuycarbide.com/SparkTest.html

Comments :

3 Comments to “THE SPARK TEST OF STEELS”

suriya said... on 

Hey thanks man!! you are so good. I think this the perfect work.

Stainless Steel Benches

Anonymous said... on 

Huh. Nice post, looks a lot like the one on Wikipedia: http://en.wikipedia.org/wiki/Spark_testing

Helpful though; thanks!

Anonymous said... on 

pay attention 3d printer kiddies! :p Thanks :)

Post a Comment

Recent Posts

Email Newsletter

 
© Copyright 2013 Search Steel